a2 United States Patent

US009361231B2

(10) Patent No.: US 9,361,231 B2

Klein et al. 45) Date of Patent: *Jun. 7, 2016
(54) IMPLICIT IO SEND ON CACHE (56) References Cited
OPERATIONS
U.S. PATENT DOCUMENTS
(71) Applicant: International Business Machines 7.234,004 B2 6/2007 Raisch
Corporation, Armonk, NY (US) 7,715428 B2 5/2010 Basso et al.
8,156,261 B2 4/2012 Barry et al.
(72) Inventors: Matthias Klein, Boeblingen (DE); 8,250,260 B2 82012 Raisch et al.
Marco Kraemer, Sindelfingen (DE); 8,302,109 B2 10/2012 Arimilli et al.
) 8,346,971 B2 1/2013 Roberts et al.
Carsten Otte, Stuttgart (DE); Christoph 8429315 B1* 4/2013 Chudgarc.c... GOGF 3/00
Raisch, Gerlingen (DE) 709/250
2010/0198998 Al* 82010 Hiramoto GOG6F 13/124
(73) Assignee: INTERNATIONAL BUSINESS 2012/0272037 AL 1072012 Baver ef al 710/23
MACHINES CORPORATION, 2013/0208671 Al* 82013 Rozz HO4L 25/00
Armonk, NY (US) 370/329
2013/0339630 Al* 12/2013 Alexander GOGF 12/0808
(*) Notice: Subject. to any disclaimer,. the term of this 2015/0199274 Al 772015 Klein et al. 71144
patent is extended or adjusted under 35
U.S.C. 154(b) by 253 days. * cited by examiner
This patent is subject to a terminal dis- Primary Examiner — Kevin Verbrugge
claimer. Assistant Examiner — Candice Rankin
(74) Attorney, Agent, or Firm — Arnold B. Bangali
(21) Appl. No.: 14/155,495 (57) ABSTRACT
A method for implicit input-output send on cache operations
(22) Filed: Jan. 15, 2014 of a central processing unit is provided. The method com-
prises an aggregation queue of a central processing unit,
(65) Prior Publication Data storing input-output data of the central processing unit,
wherein the aggregation queue transmits the input-output
US 2015/0199273 Al Jul. 16, 2015 data to an input-output adaptor, and wherein the input-output
data is transmitted in parallel with operations of the central
(51) Int.ClL processing unit. The method further comprises, a memory
GOG6F 13/00 (2006.01) management unit of the central processing unit, interpreting
GOG6F 12/08 (2016.01) address space descriptors for implicit input-output transmittal
(52) US.CL ofthe input-output data of the aggregation queue. The method
CPC ... GO6F 12/0831 (2013.01); GO6F 2212/621 further comprises, a cache traftic monitor of the central pro-
(2013.01) cessing unit, transmitting the input-output data in an implicit
(58) Field of Classification Search input-output transmittal range between the cache traffic
CPC ... GOGF 12/0831; GOGF 2212/621; Gogr ~ monitor and the aggregation queue, wherein the cache traffic
3/0653: GOGF 3 /06,55' GOGF 3 /0659f GOGF monitor transmits cache protocol of the central processing
’ ’ ’ 9/546 unit to the memory management unit.

See application file for complete search history.

105j

6 Claims, 7 Drawing Sheets

CENTRAL PROCESSING UNIT (CPU)

10 CACHE TRAFFIC
MONITOR, L1

146
CACHE TRAFFIC
MONITOR, L2, L3
AGGREGATION

QUEUE

147

a1
CACHE SNoop |~ 148
UNIT 15
MEMORY
ADDRESS
SPACE
5
145

150~

|/O ADAPTER

158 ETHERNET ENGINE

U.S. Patent Jun. 7, 2016 Sheet 1 of 7 US 9,361,231 B2

/100
105j

CENTRAL PROCESSING UNIT (CPU)

110 — CACHE TRAFFIC
MONITOR, L1

146 CACHE SNoop |~ 148
I:SENDMMU UNIT 115
112~ MEMORY
CACHE TRAFFIC NETWORK
MONITOR, L2, L3 102 AgBEEES
rd
D)
145
AGGREGATION SEND SIGNAL

150 —— I/O ADAPTER

155 \-/‘| ETHERNET ENGINE

FIG. 1

U.S. Patent Jun. 7, 2016 Sheet 2 of 7 US 9,361,231 B2

105 cpu
)
2.
]
. L2 CACHE SENDMMU |— 146
))
112 2 i
|
SEND SIGNAL AGGREGATION
149~ ""ENGINE QUEUE [~—147
FIG. 2
IRQ ON QUEUE FULL
105 ©cPU |fe-ommmm—— T .
' |
110 — L1 CACHE i
’ i
112 —] L2 CACHE 148 |
ADDRESS T SENDUL i
DATA .~ ¥ T HEADER ROMA OFFSET, |
149 P | | METADATA i
V //’/ 1 _:
r = AGGREGATION |~——————————-—---
SEND SIGNAL QUEUE — 147
ENGINE
FRAME BACK PRESSURE
SIGNALING
Y
ETHERNET

116 ~ DRAM

ENGINE [~ 155

FIG. 3

U.S. Patent

Jun. 7, 2016 Sheet

112 —

L2 CACHE

A

Y

160 t0

{

CACHE
SNOOP UNIT

112 —

L3 CACHE

FIG. 4

3of7 US 9,361,231 B2

SENDMMU |~— 146

t0 + dt1

[AGGREGATION e

QUEUE

(ADDRESS,
PETITION ID,
PROCESS ID)

SENDMMU

146

(ADDRESS RANGE,
PARTITION ID,
PROCESS ID,
METADATA,

SEND CONTEXT ID)

CONTROL
LOGIC

~ 162

163

LOOKUP
TABLE

165

METADATA
STORE

OUTPUT BUFFER 164

Y
FIG. 5

TO AGGREGATION QUEUE

U.S. Patent Jun. 7, 2016 Sheet 4 of 7 US 9,361,231 B2
147~
AGGREGATION QUEUE
AGGREGATION SEND
610~ 6207 CONTEXT TABLE
AGGREGATION
AGGREGATION | | AGGREGATION
CONTROL LOGIC i e
T 7
])
603 604
AGGREGATION
6301 " INE STORE
FIG. 6

F-71O

AN AGGREGATION QUEUE OF A CENTRAL PROCESSING UNIT (CPU) STORES
INPUT-OUTPUT DATA OF THE CENTRAL PROCESSING UNIT, WHEREIN THE
AGGREGATION QUEUE TRANSMITS THE INPUT-OUTPUT DATA TO AN INPUT-OUTPUT
ADAPTER, AND WHEREIN THE INPUT-OUTPUT DATA IS TRANSMITTED IN PARALLEL
WITH OPERATIONS OF THE CENTRAL PROCESSING UNIT

!

A MEMORY MANAGEMENT UNIT OF THE CENTRAL PROCESSING UNIT,
INTERPRETS ADDRESS SPACE DESCRIPTORS FOR IMPLICIT INPUT-QUTPUT |~—720
TRANSMITTAL OF THE INPUT-OUTPUT DATA OF THE AGGREGATION QUEUE

!

A CACHE TRAFFIC MONITOR OF THE CENTRAL PROCESSING UNIT, TRANSMITS
THE INPUT-OUTPUT DATA IN AN IMPLICIT INPUT-OUTPUT TRANSMITTAL RANGE
BETWEEN THE CACHE TRAFFIC MONITOR AND THE AGGREGATION QUEUE, [~ 730
WHEREIN THE CACHE TRAFFIC MONITOR TRANSMITS CACHE PROTOCOL OF
THE CENTRAL PROCESSING UNIT TO THE MEMORY MANAGEMENT UNIT

FIG. 7

U.S. Patent

Jun. 7, 2016 Sheet 5 of 7

805

A CPU WRITES DATA INTO L1/1.2 CACHE

810

L2 DECIDES
TO FORWARD DATA
TOL3?

NO

815 —

PRE-REGISTERED ADDRESS RANGES AND PROCESS IDs

A SENDMMU COMPARES ADDRESS TO

820
NO

MATCH?

YES

825~

THE SENDMMU CALCULATES OFFSET

l

US 9,361,231 B2

830 ~—

THE SENDMMU FORWARDS HEADER, OFFSET AND
METADATA TO AN AGGREGATION QUEUE OF THE CPU

FIG. 8A

U.S. Patent Jun. 7, 2016

(_ START)

WAIT FOR DATA
SENDMMU

~ 860

862

IDENTIFY
IF AGGREGATION
QUEUE IS ALREADY COLLECTING
DATAFOR THIS
FRAME

NO

Sheet 6 of 7

US 9,361,231 B2

START NEW FRAME

AGGREGATION | 874

876
YES o VAX
GLOBAL FILL STATE
‘ REACHED?
CONTINUE FRAME |__ g4
AGGREGATION
FOR FRAME
FORWARD OLDEST FRAME
TO ETHERNETENGINE |~ 866
|
\O MMEDIATE~ 368
SEND OUT TO

MAX

NO —FRAME SIZE STATE

YES

METADATA?

A

YES

REACHED ?

FIG. 8B

FORWARD THIS FRAME

—~—870

U.S. Patent Jun. 7, 2016 Sheet 7 of 7 US 9,361,231 B2

s 900

COMPUTER 928
912 — /
MEMORY
930 934
\
RAM |- STORAGE
91\6 SYSTEM
PROCESSING CACHE 940 |
UNIT 7 ’J:.I'l
932 L
A _
918~ - 942
924 922
10 a
DISPLAY |= INTERFACE(S) NETWORK ADAPTER
A
914
N o
EXTERNAL
DEVICE(S)

FIG. 9

US 9,361,231 B2

1
IMPLICIT I/O SEND ON CACHE
OPERATIONS

FIELD OF THE INVENTION

The present invention relates generally to central process-
ing unit (CPU) of computing systems, and more particularly,
to implicit input-output send on cache operations of the CPU.

BACKGROUND

A central processing unit (CPU) cache is a cache used by
CP of computing system to reduce the average time to access
memory. The cache is a smaller, faster memory which stores
copies of the data from frequently used main memory loca-
tions. Most CPUs have different independent caches, includ-
ing instruction and data caches, where the data cache is usu-
ally organized as a hierarchy of more cache levels (L1, [.2
etc.). For example, when the CPU needs to read or write data
to a location in memory, it first verifies whether a copy of the
data is in the cache. If so, the CPU immediately reads from or
writes the data to the cache, which can be a faster process than
reading from or writing the data to main memory.

SUMMARY

In one embodiment, a computer-implemented method is
provided implicit input-output send on cache operations of a
central processing unit. The computer-implemented method
comprises, an aggregation queue of a central processing unit,
storing, by one or more processors, input-output data of the
central processing unit, wherein the aggregation queue trans-
mits the input-output data to an input-output adaptor, and
wherein the input-output data is transmitted in parallel with
operations of the central processing unit. The computer-
implemented method further comprises a memory manage-
ment unit of the central processing unit, interpreting address
space descriptors, by the one or more processors, for implicit
input-output transmittal of the input-output data of the aggre-
gation queue. The computer implemented method further
comprises a cache traffic monitor of the central processing
unit, transmitting, by the one or more processors, the input-
output data in an implicit input-output transmittal range
between the cache traffic monitor and the aggregation queue,
wherein the cache traffic monitor transmits cache protocol of
the central processing unit to the memory management unit.

In another embodiment, a computer system for implicit
input-output send on cache operations of a central processing
unit is provided. The computer system comprises one or more
processors, one or more computer-readable memories, one or
more computer-readable tangible storage devices and pro-
gram instructions which are stored on at least one of the one
or more storage devices for execution by at least one of the
one or more processors via at least one of the one or more
memories. The computer system further comprises program
instructions to store, by an aggregation queue of a central
processing unit, input-output data of the central processing
unit, wherein the aggregation queue transmits the input-out-
put data to an input-output adaptor, and wherein the input-
output data is transmitted in parallel with operations of the
central processing unit. The computer system further com-
prises program instructions to interpret, by a memory man-
agement unit of the central processing unit, address space
descriptors for implicit input-output transmittal of the input-
output data of the aggregation queue. The computer system
further comprises program instructions to transmit, by a
cache traffic monitor of the central processing unit, the input-

10

15

20

25

30

35

40

45

50

55

60

65

2

output data in an implicit input-output transmittal range
between the cache traffic monitor and the aggregation queue,
wherein the cache traffic monitor transmits cache protocol of
the central processing unit to the memory management unit.

In yet another embodiment, a computer program product
for implicit input-output send on cache operations of a central
processing unit is provided. The computer program product
comprises one or more processors, one or more computer-
readable memories, one or more computer-readable tangible
storage devices and program instructions which are stored on
at least one of the one or more storage devices for execution
by at least one of the one or more processors via at least one
of'the one or more memories. The computer program product
further comprises program instructions to store, by an aggre-
gation queue of a central processing unit, input-output data of
the central processing unit, wherein the aggregation queue
transmits the input-output data to an input-output adaptor,
and wherein the input-output data is transmitted in parallel
with operations of the central processing unit. The computer
program product further comprises program instructions to
interpret, by a memory management unit of the central pro-
cessing unit, address space descriptors for implicit input-
output transmittal of the input-output data of the aggregation
queue. The computer program product further comprises pro-
gram instructions to transmit, by a cache traffic monitor of the
central processing unit, the input-output data in an implicit
input-output transmittal range between the cache traffic
monitor and the aggregation queue, wherein the cache traffic
monitor transmits cache protocol of the central processing
unit to the memory management unit.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Novel characteristics of the invention are set forth in the
appended claims. The invention will be best understood by
reference to the following detailed description of the inven-
tion when read in conjunction with the accompanying figures,
wherein like reference numerals indicate like components,
and:

FIG. 1 is a functional diagram of implicit /O send on cache
computing environment for initializing implicit input/output
(I/0) write and send requests of a computing system, in
accordance with embodiments of the present invention.

FIG. 2 is a network flow diagram of an end-to-end scenario
for implicit /O send on cache of at least one I/O request
within implicit /O send on a cache computing environment,
in accordance with embodiments of the present invention.

FIG. 3 is a network diagram of an end-to-end scenario for
implicit I/0 send (network) and write (flash) within implicit
1/0 send on a cache computing environment, in accordance
with embodiments of the present invention.

FIG. 4 illustrates a functional block diagram depicting
connection between L2/1.3 interface of cache control traffic, a
sendMMU, a cache snoop unit, and an aggregation queue of
an implicit I/O send on cache computing environment for
initializing implicit input/output (I/O) write and send requests
of'a computing system, in accordance with embodiments of
the present invention.

FIG. 5 illustrates a functional block diagram of compo-
nents of a sendMMU of an implicit /O send on cache com-
puting environment for initializing implicit input/output (I/O)
write and send requests of a computing system, in accordance
with embodiments of the present invention.

FIG. 6 illustrates a functional block diagram of an aggre-
gation queue in accordance with embodiments of the present
invention.

US 9,361,231 B2

3

FIG. 7 is a flow diagram by CPU for implicit input-output
send on cache operations of within implicit I/O send on cache
computing environment, in accordance with embodiments of
the present invention.

FIGS. 8A-8B are flow diagrams depicting steps performed
by a sendMMU and an aggregation queue of an implicit I/O
send on cache computing environment, in accordance with
embodiments of the present invention.

FIG. 9 illustrates a block diagram of components of a
computer system in accordance with embodiments of the
present invention.

DETAILED DESCRIPTION

The present invention comprises functionality for initial-
izing implicit input/output (I/O) write and send requests of a
computing system. The implicit write and send requests are
initiated without operating system interception on cache
memory locations of central processing units (CPU) of the
computing system. For example, according to at least one
embodiment, the present invention includes a hardware
implemented send memory management unit (MMU) (re-
ferred to hereinafter as sendMMU), that snoops on addresses
of cache traffic within a cache hierarchy of the computing
system. The present invention further includes an aggregation
queue that accumulates smaller store operations on cache-
lines of the computing system into larger frames that are
processed by an I/O engine of the computing system, as
described below, in accordance with embodiments of the
present invention.

The present invention will now be described in detail with
referenced to the accompanying Figures. Referring now to
FIG. 1, a functional diagram of implicit I/O send on cache
computing environment 100 for initializing implicit input/
output (I/O) write and send requests of a computing system, is
shown, in accordance with at least one embodiment of the
present invention. Implicit I/O send on cache computing envi-
ronment 100 includes central processing unit (CPU) 105,
memory 115, cache traffic monitor level 1 (L1), level 2 (L2),
sendMMU 146, aggregation queue 147, cache snoop unit
148, send signal engine 149, and /O adaptor 150, all inter-
connected over network 102.

CPU 105 is the hardware unit that executes program
instructions of implicit /O send on cache computing envi-
ronment 100 by performing arithmetical, logical, and input/
output operations for initializing implicit input/output (/O)
write and send requests of implicit I/O send on cache com-
puting environment 100. CPU 105 includes level 1 (1) cache
traffic monitor 110 for storing data of implicit I/O send on
cache computing environment 100. CPU 105 is connected
through network 102 to further caches which may be level 2
and 3 caches, including, for example, level two (L.2), level
three (L3) of cache traffic monitor 112.

Network 102 includes one or more networks of any kind
that can provide communication links between various
devices and computers connected together within implicit [/O
send on cache computing environment 100. Network 102 can
also include connections, such as wired communication links,
wireless communication links, or fiber optic cables. Network
102 can also be implemented as a number of different types of
networks, including, for example, a local area network
(LAN), wide area network (WAN) or a packet switched tele-
phone network (PSTN), or some other networked system.
Implicit /O send on cache computing environment 100 can
utilize the Internet with network 102 representing a world-
wide collection of networks within implicit I/O send on cache
computing environment 100. For example, the term “Inter-

30

40

45

50

55

4

net” as used according to embodiments of the present inven-
tion refers to a network or networks that uses certain proto-
cols, such as the TCP/IP protocol, and possibly other
protocols such as the hypertext transfer protocol (HTTP) for
hypertext markup language (HTML) documents that make up
the World Wide Web (the web). Network 102 may be also be
implemented as conventional data bus or by switches and
point to point connections.

Memory 115 may comprise, for example, one or more
computer-readable storage media, which may include ran-
dom-access memory (RAM), or any other form of fixed or
removable storage medium that can be used to carry or store
desired program code and program data in the form of instruc-
tions or data structures and that can be accessed by other
components of implicit I/O send on cache computing envi-
ronment 100. Memory 115 includes address space 145.
Address space 145 is composed of addressable memory loca-
tions for one or more program applications that execute pro-
gram instructions of memory 115 within implicit /O send on
cache computing environment 100. Address space 145 also
defines a range of discrete addresses of memory 115, each of
which may correspond to a network host, peripheral device,
disk sector, a memory cell or other logical or physical entity
of memory 115.

sendMMU 146 snoops on addresses of cache traffic within
a cache hierarchy of CPU 105 during system operations of
implicit I/O send on cache computing environment 100. For
example, snooping by sendMMU 146 involves a process
wherein the individual caches of CPU 105, including, .1, 1.2,
L3, monitor address lines for accesses to memory locations
that they have cached. Snooping by sendMMU 146 can also
include a write invalidate protocol, wherein a write operation
is observed to a location that a cache has a copy of, and the
cache controller invalidates its own copy of the snooped
memory location of CPU 105.

Aggregation queue 147 receives data packets that contain
an offset and cache line data of CPU 105 in memory, wherein
aggregation queue 147 aggregates the stored data packets of
cache lines per send context to contiguous areas of CPU 105
within implicit /O send on cache computing environment
100. Aggregation queue 147 is operatively connected to the
SendMMU 146, cache snoop unit 148 and send signal engine
149 of memory 115. Cache snoop unit 148 transports cache
line data to aggregation queue 147. Send signal engine 149
receives data to be sent out together with metadata of implicit
1/0 send on cache computing environment 100 which is used
by the send signal engine 149 to frame header of memory 115.

1/0 adaptor 150 is a hardware element that provides access
to main memory for reading and writing I/O instructions of
implicit I/0 send on cache computing environment 100. I/O
adaptor 150 includes ethernet engine 155. Ethernet engine
155 generates communication protocols of I/O adaptor 150
within implicit /O send on cache computing environment
100. For example, ethernet engine 155 includes TCP/IP con-
nection which includes networking communications proto-
cols that provides end to end connectivity that specifies how
data of ethernet engine 155 should be formatted, addressed,
transmitted, routed and received within implicit /O send on
cache computing environment 100.

FIG. 2 is a network flow diagram of an end-to-end scenario
for implicit /O send on cache of at least one I/O request
within implicit /O send on cache computing environment
100, in accordance with embodiments of the present inven-
tion. According to at least one embodiment, CPU 105 adds an
address range to sendMMU 146, and marks the address range
as implicit /O send. (Flow 1). For example, an algorithm or
program application of CPU 105 determines that a certain

US 9,361,231 B2

5

address range should be used for implicit I/O operations of
implicit I/O send on cache computing environment 100. The
address range can be consecutive or consist of multiple
smaller ranges, including, for example, memory pages of
CPU 105. In this manner, according to at least one embodi-
ment, CPU 105 registers the address range in sendMMU 146.
For example, the registration step can be executed through
accessing I/O registers of CPU 105.

Moreover, additional information transmitted from CPU
105 to sendMMU 146 can include, for example, addresses,
length fields, memory keys of implicit [/O operations of
implicit I/O send on cache computing environment 100. The
metadata can also include transmission control protocol
(TCP) and internet protocol (IP), which are commonly known
as TCP/IP, wherein the TCP/IP connection, which can be
utilized by 1/O adaptor 150 to generate valid communication
protocol within implicit /O send on cache computing envi-
ronment 100.

According to further aspects, CPU 105 operates on data
written by L2 cache of cache traffic monitor 112 to a cache
hierarchy of implicit /O send on cache computing environ-
ment 100, wherein implicit send mechanism of CPU 105
aggregates and transmit data in parallel within implicit I/O
send on cache computing environment 100. (Flow 2). This, in
this case, is either done through direct memory access (DMA)
of memory 110, wherein CPU 105 utilizes special address
ranges within its memory space to store data into an I/O
engine 150. For example, according to at least one embodi-
ment, memory area of memory 115 that is used for I/O engine
150 is cached, wherein, accessing the memory area can cause
cache read/write access to memory 115, and wherein, accord-
ing to at least one embodiment, the accessed cache read/write
are utilized by sendMMU 146 to determine if further 1/O
operations should be executed, in accordance with embodi-
ments of the present invention.

Further, according to aspects of the present invention, CPU
105 synchronizes to implicit send mechanism based on, first,
initiating a full L2 cache writeout of area of memory to be sent
to aggregation queue 147 for storing. This triggers sending of
the missing pieces, or reading the “in flight™/“sent™ indicators
to sendMMU 146 and only triggers write out on “in flight”
data by L2 cache writeout by signal engine 149. (Flow 4). For
example, during the first instance of synchronization by CPU
105, implicit I/O send operation to sendMMU 146 needs an
additional operation which “forces” the start of an 1/O opera-
tion. In this manner, CPU 105 executes a synchronization
instruction indicating which address ranges should be guar-
anteed to be forwarded to the /O adaptor 150. In the second
instance of synchronization by CPU 105, CPU 105 queries
state information present in sendMMU 146, determines
which data areas already have been sent, and then trigger the
send of the missing areas of memory 115. According to at
least one embodiment, a writeout complete the aggregation
queue 147 is triggered by CPU 105 to send out all data
without further aggregating for this set of /O operations of
implicit I/O send on cache computing environment 100.
(Flow 4).

For example, data packet sizes as handled by the cache
hierarchy are typically much smaller than data packet sizes
handled by I/O networks like Ethernet or Infiniband. There-
fore, aggregation queue 147 needs to aggregate data packets
received by the cache hierarchy of I/O operations of implicit
1/0 send on cache computing environment 100 into larger
chunks. For example, to allow the user algorithm to continue,
CPU 105 needs to know when the send-out actually has
completed. This can be accomplished by reading the “in

20

35

40

45

50

55

60

65

6
flight” indicators in the sendMMU 146 or by reading other
sendcomplete indicators of the /O adaptor 150.

FIG. 3 is a network diagram of an end-to-end scenario for
implicit I/0 send (network) and write (flash) within implicit
1/0 send on cache computing environment 100, in accordance
with embodiments of the present invention. CPU 105 writes
data into L1/1.2 cache, in random order. For example, CPU
105 uses its complete instruction set, including, load or store
instructions operating on sendMMU 146 mapped address
space to generate the data which is sent to /O adaptor 150.
L.1/1.2 cache hierarchy summarizes reduced amount of cache
load and cache purge instructions forwarded from the [.2
cache to L3 or DRAM 116 for storage in aggregation queue
147. Further, according to at least one embodiment, asyn-
chronous .2 destage (write back) is “snooped” by sendMMU
146. For example, sendMMU 146 snoops communication
from L2 to other cache levels of CPU 105. As depicted,
sendMMU is connected to the .2-L.3 interface of CPU 105,
and extracts all data written associated with addresses for
further analysis by the sendMMU. For example, according to
at least one embodiment, sendMMU 146 compares the
addresses of snooped cache traffic to the preregistered areas
of'address space of CPU 105. If there’s a match it forwards a
match indicator to the aggregation queue 147 for processing.

According to at least one embodiment, sendMMU 146 has
a summary capability which ORs all “in flight” indicators for
a contiguous area of CPU 105. If the in flight indicators are
required by metadata, sendMMU 146 triggers completion
signaling to indicate a “no data in flight” for such an area of
CPU 105.

According to at least one embodiment, if aggregation
queue 147 gets above a certain fill state, aggregation queue
147 then transmits data interrupt request (IRQ) to CPU to
initiate execution of another process. This could also be a
thread switch mechanism of CPU 105. For example, there are
cases where the I/O engine 150 is slower to process data than
aggregation queue 147 is in forwarding data. In this case, if
aggregation queue 147 reaches a threshold in forwarding
data, then aggregation queue 147 transmits data interrupt to
the CPU 105 to stop execution of the thread causing aggre-
gation queue 147 full condition of the transmitted data.

FIG. 4 illustrates a functional block diagram depicting
connection between L.2/1.3 interface of cache control traffic
112, sendMMU 146, cache snoop unit 160, and aggregation
queue 147, in accordance with embodiments of the present
invention.

In the depicted environment, each cachcline, 1.2, L3 is
associated with a tuple virtual address of implicit I/O send on
cache computing environment 100. According to at least one
embodiment, cache snoop unit 160 listens to protocol
between L2 and L3 cache and extracts virtual address infor-
mation, partition ID, process ID, data of cachelines that asso-
ciated CPU 105. It then reorders this information to send the
address, partition ID to sendMMU 146 with associated data to
aggregation queue 147, as described below, in accordance
with embodiments of the present invention.

FIG. 5 illustrates a functional block diagram of compo-
nents of sendMMU 146, in accordance with embodiments of
the present invention.

According to at least one embodiment, sendMMU 146
includes a setup mechanism in CPU 105 that stores tuples of
(address range, partition 1D, process ID, metadata, send con-
text ID) into SendMMU 146, wherein control logic 162
places the address range, partition ID, process ID into the
lookup table, metadata and send context ID into metadata
store 165.

US 9,361,231 B2

7

SendMMU also includes a remove procedure of CPU 105.
According to at least one embodiment, the remove procedure
in the CPU stores context ID to be removed from CPU 105.
Control logic 162 creates a remove request in output buffer
164 and sends it to aggregation queue 147. SendMMU 146
also includes a lookup procedure of CPU 105, wherein cache
snoop unit 160 sends a lookup request to sendMMU 146,
control logic 162, and instructs the lookup table to match
incoming (address, partition ID, process ID) against all stored
(address range, partition ID, process ID). If no match is found,
control logic 162 stops any further operation on this (address,
partition ID, process ID). However, if a match is found control
logic 162 uses the first match to select the associated metadata
and sends context ID to the output buffer. In this manner,
according to at least one embodiment, control logic 162 stores
the value of offset=address_Address_range_start into output
buffer 164, then control logic 162 instructs output buffer 164
to forward stored information to aggregation queue 147 of
FIG. 1.

FIG. 6 illustrates a functional block diagram of aggregation
queue 147 in accordance with embodiments of the present
invention. Aggregation queue 147 receives data packets that
contain an offset and cache line data of CPU 105 in memory,
wherein aggregation queue 147 aggregates the stored data
packets of cache lines per send context to contiguous areas of
CPU 105 to be sent out on network of devices of implicit [/O
send on cache computing environment 100. Aggregation
queue 147 is connected to sendMMU 146, cache snoop unit
160 and send signal engine 149, as described above.

Aggregation queue 147 includes aggregation control logic
610, aggregation send context table 620 and aggregation line
store 630. Aggregation control logic 610 controls operations
of'aggregation queue 147. Aggregation send context table 620
is an array of send contexts of aggregation queue 147,
wherein each send context has the same size. Aggregation line
store 630 stores lines of data before they are sent out by
aggregation queue 147, manages a free list of data internally,
and forwards line data to the send engine on request of aggre-
gation queue 147. Moreover, according to at least one
embodiment, aggretion send context table 620 includes an
array of aggregation unit 603, 604 that are stored by offset
within implicit /O send on cache computing environment
100. According to at least one embodiment, aggregation unit
603, 604 allows halt of search for matching aggregation unit
603, 604, as soon as offset of new data is lower then base of
offset of aggregation unit, 603, 604. For example, aggregation
unit 603, 604 contains based offset ofthe aggregated memory,
number of aggregated lines, age of the aggregated lines, a
circular buffer that contains line store indices of the stored
data, and an index into circular buffer pointing to the first
element of aggregation queue 147. sendMMU 146 transmits
data containing commands for implicit I/O send on cache
operations to aggregation queue 147, as described above, in
accordance with embodiments of the present invention.

FIG. 7 is a flow diagram by CPU 105 for implicit input-
output send on cache operations of within implicit /O send on
cache computing environment 100. Aggregation queue 147
stores input-output data CPU 105, wherein aggregation queue
147 transmits the input-output data to I/O adaptor 150, and
wherein the input-output data is transmitted in parallel with
operations of CPU 105. (Step 710). Aggregation queue 147,
aggregate the transmitted input-output data of the implicit
input-output transmittal range. For example, aggregation
queue 147 transmits the aggregated input-output of the
implicit input-output transmittal range to an input-output
engine of CPU 105. sendMMU 146 interprets address space
descriptors of CPU 105 for implicit input-output transmittal

10

15

20

25

30

35

40

45

50

55

60

65

8

of'the input-output data of aggregation queue 147 (Step 720).
For example, CPU 105 adds preregistered address space
descriptors to sendMMU 146 and wherein CPU 105 marks
the added preregistered address space descriptors as an
implicit input-output operation of CPU 105. Cache traffic
monitor, [.2, 1.3 transmits by the input-output data in an
implicit input-output transmittal range between the cache
traffic monitor L2, L3 and aggregation queue 147, wherein
cache traffic monitor L2, L3 transmits cache protocol of the
central processing unit to the memory management unit.
(Step 730). Moreover, cache traffic monitor [.2, [.3, monitors
the preregistered address space descriptors of CPU 105 for
accessing cached memory locations CPU 105. sendMMU
146 compares the interpreted address space descriptors of
CPU 105 with the preregistered address space descriptors of
CPU 105. For example, if there is a match of address space
descriptors between the interpreted address descriptors and
preregistered address descriptors, sendMMU 146 transmits
the match of the address space descriptors to aggregation
queue 147, wherein the match includes implicit input-output
data CPU 105. Cache traffic monitor [.2, [.3 further synchro-
nizes implicit input-output transmittal of input-output data to
initiate implicit input-output operations CPU 105.

FIG. 8A depicts step performed by sendMMU 146 for
snooping on addresses of cache traffic within a cache hierar-
chy of CPU 105 during system operations of implicit [/O send
on cache computing environment 100, in accordance with
embodiments of the present invention. CPU writes data into
L1/L.2 cache of cache traffic monitor 112. (Step 805). For
example, CPU 105 utilizes its complete instruction set,
including, load, store, or ALU instructions operating on the
sendMMU 146 address space to generate data which should
be sent to the I/O adaptor 150. L2 determines whether to
forward the data to L.3. (Decision 810).

For example, if .2 decides to forward the data, then at step
815, sendMMU 146 compares address descriptors of CPU
105 to preregistered address descriptors and process IDs of
CPU 105 to determine if there is a match of address space
descriptors. A decision 820, sendMMU 146 determines if
there is a match. If there is a match, at step 825, sendMMU
146 calculates the offset snooped address descriptors within
registered address descriptors of CPU 105. However, if there
is not match, then at step 805, CPU writes data into [.1/L.2
cache of cache traffic monitor 112.

Moreover, at step 830, send MMU 146 forwards header,
offset and metadata to aggregation queue 147.

FIG. 8B is a flow diagram by aggregation queue 147 for
aggregating stored data packets of cache lines per send con-
text to contiguous areas of CPU 105 within implicit /O send
on cache computing environment 100. Aggregation queue
147 is triggered by data sent from the sendMMU 146. (Step
860). Aggregation queue 147 identifies if aggregation queue
is collecting data frame aggregations. (Decision 862). For
example, according to at least one embodiment, aggregation
queue 147 maintains a directory of current frame aggrega-
tions of CPU 105. Identification of frame aggregation is based
on an identifier which is part of the metadata provided by the
sendMMU 146. If current frame aggregation could not be
found, then at step 874, aggregation queue 147 starts a new
frame aggregation. Further, aggregation queue determines, at
decision 876, if internal buffer of CPU 105 exceeds a certain
buffer fill level. If the internal buffer exceeds the buffer fill
level, then, at step 866, aggregation queue 147 forwards old-
est frame to ethernet engine 155. If the internal buffer does not
exceed the certain buffer fill level, then, at step 864, aggrega-
tion queue 147 continues to aggregate for frame.

US 9,361,231 B2

9

For example, aggregation queue 147 adds a new frame
aggregation into its directory and assigns the identifier pro-
vided by the sendMMU 146 for this new frame aggregation.
Aggregation queue 147 forwards oldest frame to ethernet
engine 155. (Step 866). For example, if the fill level of the
internal buffer of CPU 105 reaches a certain configurable
threshold, the data of oldest aggregation is sent out to the
ethernet engine 155. This step is repeated until the fill level
goes below a certain configurable threshold.

Aggregation queue 147 determines if immediate send out
by metadata of CPU 105. (Decision 868). For example, if the
metadata indicates an immediate send out of CPU 105, the
data stored in the internal buffer for this frame aggregation is
immediately forwarded to the ethernet engine 155 without
reaching a threshold. If aggregation queue 147 determines to
transmit metadata, then, at step 870, aggregation queue 147
continues to forward oldest frame to ethernet engine 155.
However, if aggregation queue 147 decides not to transmit
metadata, then, at decision, 872, aggregation queue 147 deter-
mines if max size frame has been reached a certain threshold.
Ifthe threshold has been reached, then aggregation queue 147
forwards the frame at step 870. However, if a max size has not
been reached, then at step 860, aggregation queue 147 is
triggered by data sent from the sendMMU 146.

FIG. 9 is a block diagram of a computer system, in accor-
dance with an embodiment of the present invention. Com-
puter system 900 is only one example of a suitable computer
system and is not intended to suggest any limitation as to the
scope of use or functionality of embodiments of the invention
described herein.

Regardless, computer system 900 is capable of being
implemented and/or performing any of the functionality set
forth hereinabove. In computer system 900 there is computer
912, which is operational with numerous other general pur-
pose or special purpose computing system environments or
configurations. Examples of well-known computing systems,
environments, and/or configurations that may be suitable for
use with computer 912 include, but are not limited to, per-
sonal computer systems, server computer systems, thin cli-
ents, thick clients, handheld or laptop devices, multiprocessor
systems, microprocessor-based systems, set top boxes, pro-
grammable consumer electronics, network PCs, minicom-
puter systems, mainframe computer systems, and distributed
cloud computing environments that include any of the above
systems or devices, and the like. CPU 105, I/O adaptor 150,
memory 115, cache traffic monitor [.2, [.3 112 can be imple-
mented as an instance of computer 912.

Computer 912 may be described in the general context of
computer system executable instructions, such as program
modules, being executed by a computer system. Generally,
program modules may include routines, programs, objects,
components, logic, data structures, and so on that perform
particular tasks or implement particular abstract data types.
Computer 912 may be practiced in distributed cloud comput-
ing environments where tasks are performed by remote pro-
cessing devices that are linked through a communications
network. In a distributed cloud computing environment, pro-
gram modules may be located in both local and remote com-
puter system storage media including memory storage
devices.

As further shown in FIG. 9, computer 912 is shown in the
form of a general-purpose computing device. The compo-
nents of computer 912 may include, but are not limited to, one
Or More processors or processing units 916, memory 928, and
bus 918 that couples various system components including
memory 928 to processing unit 916.

10

15

20

25

30

35

40

45

50

55

60

65

10

Bus 918 represents one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus.

Computer 912 typically includes a variety of computer
system readable media. Such media may be any available
media that is accessible by computer 912, and includes both
volatile and non-volatile media, and removable and non-re-
movable media.

Memory 928 includes computer system readable media in
the form of volatile memory, such as random access memory
(RAM) 930 and/or cache 932. Computer 912 may further
include other removable/non-removable, volatile/non-vola-
tile computer system storage media. By way of example only,
storage system 934 can be provided for reading from and
writing to a non-removable, non-volatile magnetic media (not
shown and typically called a “hard drive”). Although not
shown, a magnetic disk drive for reading from and writing to
a removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing to
a removable, non-volatile optical disk such as a CD-ROM,
DVD-ROM or other optical media can be provided. In such
instances, each can be connected to bus 918 by one or more
data media interfaces. As will be further depicted and
described below, memory 928 may include at least one pro-
gram product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

Memory 115 may be stored in memory 928 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, including,
program module 940, and program data or some combination
thereof, may include an implementation of a networking envi-
ronment. For example, program modules 940 and 942 gener-
ally carry out the functions and/or methodologies of embodi-
ments of the invention as described herein.

Computer 912 may also communicate with one or more
external devices 914 such as a keyboard, a pointing device,
etc., as well as display 924; one or more devices that enable a
user to interact with computer 912; and/or any devices (e.g.,
network card, modem, etc.) that enable computer 912 to com-
municate with one or more other computing devices. Such
communication occurs via Input/Output (I/O) interfaces 922.
Still yet, computer 912 communicates with one or more net-
works such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the Inter-
net) via network adapter 920. As depicted, network adapter
920 communicates with the other components of computer
912 via bus 918. It should be understood that although not
shown, other hardware and/or software components could be
used in conjunction with computer 912. Examples, include,
but are not limited to: microcode, device drivers, redundant
processing units, external disk drive arrays, RAID systems,
tape drives, and data archival storage systems, etc.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of

US 9,361,231 B2

11

code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the Figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustrations are implemented by special pur-
posehardware-based systems that perform the specified func-
tions or acts, or combinations of special purpose hardware
and computer instructions.

As will be appreciated by one skilled in the art, embodi-
ments of the present invention may be embodied as a system,
method or computer program product. Accordingly, embodi-
ments of the present invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, embodiments of
the present invention may take the form of a computer pro-
gram product embodied in one or more computer-readable
medium(s) having computer-readable program code embod-
ied thereon.

In addition, any combination of one or more computer-
readable medium(s) may be utilized. The computer-readable
medium may be a computer-readable signal medium or a
computer-readable storage medium. A computer-readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer-readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a por-
table compact disc read-only memory (CD-ROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this document,
a computer-readable storage medium may be any tangible
medium that contains, or stores a program for use by or in
connection with an instruction execution system, apparatus,
or device.

A computer-readable signal medium may include a propa-
gated data signal with computer-readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter-readable signal medium may be any computer-readable
medium that is not a computer-readable storage medium and
that communicates, propagate, or transport a program for use
by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer-readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing. Computer
program code for carrying out operations for embodiments of
the present invention may be written in any combination of
one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++

20

30

40

45

50

60

12

or the like, conventional procedural programming languages
such as the “C” programming language, a hardware descrip-
tion language such as Verilog, or similar programming lan-
guages. The program code may execute entirely on the user’s
computer, partly on the user’s computer, as a stand-alone
software package, partly on the user’s computer and partly on
a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of net-
work, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider). The computer program instruc-
tions may also be loaded onto a computer, other program-
mable data processing apparatus, or other devices to cause a
series of operational steps to be performed on the computer,
other programmable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable appa-
ratus provide processes for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

Based on the foregoing a method for implicit input-output
send on cache operations of a central processing unit (CPU)
have been disclosed. However, numerous modifications and
substitutions can be made without deviating from the scope of
the present invention. In this regard, each block in the flow-
charts or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the Figures. Therefore, the present inven-
tion has been disclosed by way of example and not limitation.

What is claimed is:

1. A computer-implemented method for implicit input-
output send on cache operations of a central processing unit,
the computer-implemented method comprising the steps of:

an aggregation queue of a central processing unit, storing,
by one or more processors, input-output data of the
central processing unit, wherein the aggregation queue
transmits the input-output data to an input-output adap-
tor, and wherein the input-output data is transmitted in
parallel with operations of the central processing unit;

a memory management unit of the central processing unit,
interpreting address space descriptors, by the one or
more processors, for implicit input-output transmittal of
the input-output data of the aggregation queue;

a cache traffic monitor of the central processing unit, trans-
mitting, by the one or more processors, the input-output
data in an implicit input-output transmittal range
between the cache traffic monitor and the aggregation
queue, wherein the cache traffic monitor transmits cache
protocol of the central processing unit to the memory
management unit; and

the cache traffic monitor, synchronizing, by the one or
more processors, implicit input-output transmittal of
input-output data to initiate implicit input-output opera-
tions of the central processing unit.

2. The computer-implemented method of claim 1, wherein
the central processing unit adds preregistered address space
descriptors to the memory management unit, and wherein the
central processing unit marks the added preregistered address
space descriptors as an implicit input-output operation of the
central processing unit.

3. The computer-implemented method of claim 2, further
includes the step of:

US 9,361,231 B2

13

the cache traffic monitor, monitoring, by the one or more
processors, preregistered address space descriptors of
the central processing unit for accessing cached memory
locations of the central processing unit; and

the memory management unit, comparing, by the one or

more processors, interpreted address space descriptors
of the central processing unit with the preregistered
address space descriptors of the central processing unit.

4. The computer-implemented method of claim 3, wherein
if there is a match of address space descriptors between the
interpreted address descriptors and preregistered address
descriptors, the memory management unit transmits the
match of the address space descriptors to the aggregation
queue, wherein the match include implicit input-output data
of the central processing unit.

5. The computer-implemented method of claim 1,

the aggregation queue, aggregating, by the one or more

processors, the transmitted input-output data of the
implicit input-output transmittal range.

6. The computer-implemented method of claim 5, wherein
aggregation queue transmits the aggregated input-output of
the implicit input-output transmittal range to an input-output
engine of the central processing unit.

#* #* #* #* #*

15

14

